

Powered by Confident Cannabis 1 of 4

Noble Nectar Sample: 2104HGL2164.8813R1 Strain: Triple Mac 8750 84th St Noble, OK 73068 Sample Received: 04/12/2021; Report Created: 04/27/2021 preston@noble420.com (972) 757-2977 Concentrates & Extracts, Diamonds, Butane Lic. #PAAA-VJZG-KNP6 Lot#: TM001 Triple Mac Batch#: 636 Batch Size: g Cannabinoids Complete Total THC: 60.92% Total CBD: ND LOQ CBGa THCa Δ9-THC Analyte Mass Mass % % mg/g THCa 0.17 66.62 666.2 ∆9-THC 0.17 2.50 25.0 **∆8-THC** 0.17 ND ND THCV 0.17 ND ND CBDa ND 0.17 ND CBD ND ND 0.17 CBDV 0.17 ND ND CBN 0.17 <LOO <LOO CBGa 0.17 1.54 15.4 CBG 0.17 <LOQ <LOQ CBC 0.17 ND ND 94.3% 70.65 706.5 Total Date Tested: 04/15/2021 Analysis performed on Agilent Infinity II 1260 HPLC Total THC = THCa * 0.877 + d9-THC Total CBD = CBDa * 0.877 + CBD LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory. 2200 S Prospect Ave **Confident Cannabis** Abiavil Buthart Oklahoma City, OK All Rights Reserved (405) 724-8444 support@confidentcannabis.com Abigail Burkhart ACCREDITED highgradelabs.com (866) 506-5866 Laboratory Director Lic# LAAA-NKSE-J8CM www.confidentcannabis.com

Powered by Confident Cannabis 2 of 4

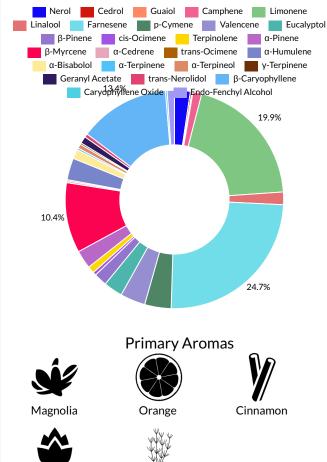
Sample: 2104HGL2164.8813R1

Concentrates & Extracts, Diamonds, Butane

Sample Received: 04/12/2021; Report Created: 04/27/2021

Noble Nectar

8750 84th St Noble, OK 73068 preston@noble420.com (972) 757-2977 Lic. #PAAA-VJZG-KNP6


Triple Mac

Lot#: TM001 Batch#: 636 Batch Size: g

Strain: Triple Mac

Terpenes

			ii fyraiae
Analyte	LOQ	Mass	Mass
i	%	%	mg/g
Farnesene	0.02	3.06	30.6
Limonene	0.02	2.46	24.6
β-Caryophyllene	0.02	1.67	16.7
β-Myrcene	0.02	1.29	12.9
p-Cymene	0.02	0.49	4.9
Valencene	0.02	0.46	4.6
α-Humulene	0.02	0.40	4.0
Eucalyptol	0.02	0.35	3.5
α-Pinene	0.02	0.34	3.4
Nerol	0.02	0.29	2.9
β-Pinene	0.02	0.24	2.4
Linalool	0.02	0.23	2.3
α-Bisabolol	0.02	0.17	1.7
Camphene	0.02	0.16	1.6
Endo-Fenchyl Alcohol	0.02	0.13	1.3
Geranyl Acetate	0.02	0.13	1.3
Terpinolene	0.02	0.13	1.3
α-Terpineol	0.02	0.08	0.8
trans-Nerolidol	0.02	0.06	0.6
cis-Ocimene	0.02	0.06	0.6
α-Terpinene	0.02	0.03	0.3
Caryophyllene Oxide	0.02	0.03	0.3
α-Cedrene	0.02	0.03	0.3
Cedrol	0.02	0.03	0.3
y-Terpinene	0.02	0.03	0.3
trans-Ocimene	0.02	0.02	0.2
Guaiol	0.02	0.02	0.2
α-Phellandrene	0.02	ND	ND
Borneol	0.02	ND	ND
Camphor	0.02	ND	ND
cis-Nerolidol	0.02	ND	ND
δ-3-Carene	0.02	ND	ND
Fenchone	0.02	ND	ND
γ-Terpineol	0.02	ND	ND
Geraniol	0.02	ND	ND
Hexahydro Thymol	0.02	ND	ND
Isoborneol	0.02	ND	ND
Isopulegol	0.02	ND	ND
Pulegone	0.02	<loq< td=""><td><loq< td=""></loq<></td></loq<>	<loq< td=""></loq<>
Sabinene	0.02	ND	ND
Sabinene Hydrate	0.02	ND	ND
Total		12.39	123.9

Date Tested: 04/15/2021; Analysis performed on Agilent 7890A GCFID

Herbal

LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Hops

Abianil Buthert Abigail Burkhart

Confident Cannabis All Rights Reserved

Laboratory Director

support@confidentcannabis.com (866) 506-5866

www.confidentcannabis.com

Powered by Confident Cannabis 3 of 4

Noble Nectar

8750 84th St Noble, OK 73068 preston@noble420.com (972) 757-2977 Lic. #PAAA-VJZG-KNP6

Sample: 2104HGL2164.8813R1

Strain: Triple Mac

Sample Received: 04/12/2021; Report Created: 04/27/2021 Concentrates & Extracts, Diamonds, Butane

Triple Mac

Lot#: TM001 Batch#: 636 Batch Size: g

Pass

Pass

Solvents

Analyte	LOQ	Limit	Results
	PPM	PPM	PPM
Acetone	25.000	1000.000	<loq< th=""></loq<>
Benzene	1.000	2.000	ND
Butanes	25.000	1000.000	592.358
Ethanol	25.000	5000.000	<loq< th=""></loq<>
Ethyl-Acetate	25.000	1000.000	ND
Heptanes	25.000	1000.000	ND
Hexanes	5.000	60.000	ND
Isopropanol	25.000	1000.000	ND
Methanol	25.000	600.000	ND
Pentane	25.000	1000.000	ND
Propane	25.000	1000.000	ND
Toluene	25.000	180.000	ND
Xylenes	25.000	430.000	ND
Total			592.358

Microbials

Analyte	Limit	Results	Status
	CFU/g	CFU/g	
Yeast & Mold	1000Ŏ	NĎ	Pass
E. Coli	1	ND	Pass
Salmonella	1	ND	Pass
Aspergillus	1	ND	Pass

Date Tested: 04/14/2021

Aerobic plate count performed on 3M Petrifilm Aerobic Count Plates. E. coli test performed on 3M Petrifilm E. coli/Coliform Plates. Salmonella test perfomed on 3M MDS system. Yeast and Mold test performed on 3M Petrifilm Rapid Yeast and Mold Plate. TNTC = Too Numerous to Count

Heavy Metals

Pass

Analyte	LOQ	Limit	Results	Status
	PPB	PPB	PPB	
Arsenic	25	200	<loq< th=""><th>Pass</th></loq<>	Pass
Cadmium	25	200	ND	Pass
Lead	25	500	63	Pass
Mercury	10	100	<loq< th=""><th>Pass</th></loq<>	Pass

Date Tested: 04/14/2021

Notes:

Analysis performed on Agilent 7697A Headspace / 7890B GC / 5977B MS LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Foreign Matter Notes:

Pass

Date Tested: 04/13/2021

Analysis performed on Agilent 7800 ICP-MS

LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Confident Cannabis All Rights Reserved support@confidentcannabis.com

Abigail Burkhart Laboratory Director

art ector

support@confid

0071@confidentcannabis.com (866) 506-5866 www.confidentcannabis.com

Lot#: TM001

Batch#: 636 Batch Size: g Powered by Confident Cannabis 4 of 4

Strain: Triple Mac

Noble Nectar

8750 84th St Noble, OK 73068 preston@noble420.com (972) 757-2977 Lic. #PAAA-VJZG-KNP6

Triple Mac

Pesticides

Sample Received: 04/12/2021; Report Created: 04/27/2021 Concentrates & Extracts, Diamonds, Butane

Sample: 2104HGL2164.8813R1

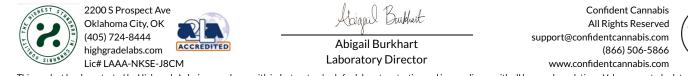
TEL AVAILABLE I
- 1966 25 留待地分布。
1997 - CAREER
ABLACT AND
X COLORED S
285.K5-505.
In the second se

Pass

Pass

Analyte	LOQ	Limit	Units	Status	Analyte	LOQ	Limit	Units	Status
	PPM	PPM	PPM			PPM	PPM	PPM	
Abamectin	0.025	0.500	ND	Pass	Myclobutanil	0.025	0.200	ND	Pass
Azoxystrobin	0.025	0.200	ND	Pass	Permethrin	0.025	0.200	ND	Pass
Bifenazate	0.025	0.200	ND	Pass	Spinosad	0.025	0.200	ND	Pass
Etoxazole	0.025	0.200	ND	Pass	Spiromesifen	0.025	0.200	ND	Pass
Imazalil	0.025	0.200	ND	Pass	Spirotetramat	0.025	0.200	ND	Pass
Imidacloprid	0.025	0.400	ND	Pass	Tebuconazole	0.025	0.400	ND	Pass
Malathion	0.025	0.200	ND	Pass					

Date Tested: 04/15/2021


Notes: Analysis performed on Agilent Infinity II 1260 / 6470 Triple Quadrupole LC/MS

LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

Analyte	LOQ	Limit	Mass	Status
	PPB	PPB	PPB	
Total Aflatoxins (B1 B2 G1 and G2)	2.50	20.00	ND	Pass
Ochratoxin A	2.50	20.00	ND	Pass

Date Tested: 04/15/2021

Notes: LOQ = Limit of Quantitation; The reported result is based on a sample weight with the applicable moisture content for that sample; Unless otherwise stated all quality control samples performed within specifications established by the Laboratory.

